

Sixth Semester B.E. Degree Examination, Dec.2014/Jan.2015 Finite Element Methods

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Missing data may suitably be assumed.

PART - A

- a. Obtain an equilibrium equations of a 3-D elastic body subjected to a body force. (08 Marks)

 b. Discuss the types of elements based on geometry (06 Marks)
 - b. Discuss the types of elements based on geometry. (06 Marks)

 c. Explain the general description of finite element method. (06 Marks)
- 2 a. Derive an expression for Total potential energy of an elastic body subjected to body force, traction force and a point force. (08 Marks)
 - b. Using Raleigh's Ritz method find a deflection of a simply supported beam of length L subjected to a uniformly distributed load of P_0 N/m. (12 Marks)
- 3 a. Write an interpolation polynomial for linear, quadratic and cubic element. (06 Marks)
 - Obtain an expression for a strain displacement matrix of a rectangular element. (14 Marks)
- 4 a. Determine the nodal displacements, reactions and stresses for the Fig. Q4 (a) using penalty approach. Take E = 210 GPa, Area = 250 mm². (12 Marks)

Fig. Q4 (a)

b. Find the nodal displacement, stress and strain of the system shown in Fig. Q4 (b). Take E = 70 GPa, Area = 1 m². (08 Marks)

(Linear varying load)

PART - B

- 5 a. Find the shape functions of a 2-D quadrilateral quadratic (9 noded) element.
- (14 Marks)

b. With a sketch define Iso, Sub and Super parametric elements.

Fig. Q4 (b)

10ME64

6 a. Obtain an expression for stiffness matrix of a truss element.

(08 Marks)

b. Find the nodal displacement, stress and reaction of truss element shown in Fig. Q6 (b). Take E = 70 GPa, Area = 200 mm². (12 Marks)

7 a. Derive the Hennite shape functions of a beam element.

(08 Marks)

b. For the beam and loading shown in Fig. Q7 (b), determine the slopes at 2 and 3 and the vertical deflection at the midpoints of the distributed load. Take E = 200 GPa, I = 4×10⁶ mm⁴.

8 a. Discuss the derivation of one dimensional heat transfer in thin films.

(08 Marks)

b. A composite wall consists of 3 materials shown in Fig. Q8 (b). The outer temperature is $T_0 = 20^{\circ}$ C, determine the temperature distribution in the wall. Convection heat transfer takes place at inner surface with $T_{\infty} = 800^{\circ}$ C. Take $h = 25 \text{ w/m}^{2}$ C, Area = 1 m²

(12 Marks)

Fig. Q8 (b)

* * * * *